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Abstract. Properties of two linear integral operatorŝR(E) and B̂(E) = R̂−1(E), relating
function values to normal derivatives on a surfaceS of a closed volumeV inside which the
function satisfies the Schrödinger equation at energyE, are discussed. Variational principles for
matrix elements and eigenvalues of these operators are constructed in a systematic way by using
an approach of Gerjuoyet al. Some of the variational principles derived were already known
in the non-relativisticR-matrix theory of scattering but others seem to be new. Applications of
the Rayleigh–Ritz linear trial functions are presented.

1. Introduction

TheR-matrix theory [1–8] is one of the most popular techniques used in theoretical studies
of atomic, molecular and nuclear processes. In this approach, one divides the configuration
space of a considered physical system into several parts and solves a wave equation
governing the dynamics of the system separately in each of these domains. The total
wavefunction describing the system in the whole configuration space is then obtained by
matching solutions obtained in individual regions at common boundaries. All information
about a particular domainV required for the matching process at an enclosing surfaceS is
embodied in a linear integral energy-dependent operatorR̂(E) which acting atS on normal
derivatives of functions that inV are solutions of the wave equation at energyE produces
values of these functions onS. The goal of theR-matrix theory is to find the operator
R̂(E) either by constructing its kernel or, equivalently, by finding anR-matrix, a matrix
representation of the operator̂R(E) in some functional basis spanning the surfaceS.

Among various approximate methods of theoretical physics, those based on the
variational calculus belong to the most effective [9, 10]. Therefore it is natural to ask
whether it would be possible to employ variational methods to achieve the aim of theR-
matrix theory. The answer is positive. Already in a classic paper on variational methods of
the quantum scattering theory, Kohn [11] proposed a variational principle which was later
recognized [1] as a variational principle for an inverse of theR-matrix for a single-channel
scattering problem. Shortly afterwards, Jackson [12] derived a restricted variational principle
for elements of a multichannelR-matrix. After two decades of stagnation, a revived interest
in variationalR-matrix methods was caused by Lane and Robson [13], Chatwin [14] and
Chatwin and Purcell [15]. Publication of these papers concerning nuclear physics problems
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coincided with the introduction of theR-matrix theory to atomic and molecular physics
[16]. Since then the development of the variationalR-matrix methods, with very few
exceptions [17–20], has been related to the research done in the latter field. Using Kohn’s
approach, Crawford [21] derived finite-volume variational principles for elements of the
scattering and reactance matrices. Although, strictly speaking, these considerations did
not concern theR-matrix theory directly, only very slight modifications are necessary
to convert Crawford’s results into a variationalR-matrix method. Oberoi and Nesbet
[22, 23] proposed an unrestricted variational principle for elements of theR-matrix and
applied it to some model scattering problems. Their work was extended to electron–helium
scattering by Kracht and Chang [24]. Zvijacet al [25] used the Kohn variational principle
to derive a variational correction improving the quality ofR-matrix calculations performed
with a truncated fixed-boundary condition basis set. Shimamura [26] generalized Jackson’s
results admitting unrestricted trial functions. The state-of-the-art theory at the end of the
seventies was reviewed by Nesbet [27]. The theory received fresh impact when Greene
[28] realized that a multichannel version of the Kohn variational principle might be used
as a variational principle for reciprocals of eigenvalues of theR-matrix. Importance of
this observation was soon recognized and a new effective version of theR-matrix theory
based on the Kohn variational principle, the variational eigenchannelR-matrix method,
was developed [28–35] and applied to studies of atomic Rydberg states [36–40], atomic
and molecular photoionization [28, 30, 34, 41–43] and electron–atom scattering [34, 44] (for
a comprehensive review of applications of the eigenchannel approach, see [40]). Further
connections between theR-matrix theory and the Kohn variational principle were studied
by Altick [45], Manolopoulos and Wyatt [46], Manolopouloset al [47] and Meyer [48].
In addition Nesbet [19, 20, 49] derived variational principles for the operatorR̂(E) and its
inverse and applied them to problems in condensed matter and molecular physics.

This brief overview shows that the literature on the variational methods related to the
R-matrix theory is quite vast. A reader will also find it very chaotic. Particular variational
principles, often closely related, have been developed (or simply guessed) using a wide
range of tricks and argumentations. In view of this rather irritating situation, there is a
strong desire for a systematic approach to create order out of the present chaos. It appears
that such an approach already exists. It was pointed out by Ra¸seev [41] that the Kohn
variational principle for reciprocals of eigenvalues of theR-matrix might be derived by
using a general machinery for construction of variational principles exposed by Gerjuoy
et al [50]. We have found that this machinery may be used to construct, in a systematic
fashion, all variational principles related to theR-matrix theory that have already been
known and, what we consider to be particularly important, a number ofnew variational
principles.

In this paper we present a systematic construction, based on the approach of Gerjuoyet
al [50], of variational principles related to theR-matrix theory. For the sake of simplicity
and clarity, desirable in a paper attempting to unify a variety of somebody else’s results, we
shall restrict our considerations to the case of a single particle moving in a potential field.
Generalization of our results to many-body systems is not difficult and an example of such
a generalization, in the context of the electron–atom scattering theory, will be presented
elsewhere [51]. In the first part of the paper, presented below, we shall be concerned with
a non-relativistic particle whose dynamics is governed by the Schrödinger equation. In the
second part [52] we shall derive variationalR-matrix methods for a particle described by
the Dirac equation.

The plan of the present paper is as follows. In section 2 we define the surface operator
R̂(E) and its inverseB̂(E) and discuss properties of eigenfunctions of these operators. In
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sections 3.1 and 3.2 we derive variational principles for eigenvalues of the operatorB̂(E)
and their reciprocals, respectively. In section 3.3 we construct variational principles for
matrix elements of the operator̂R(E) and their reciprocals, while in section 3.4 analogous
variational principles for the operator̂B(E) are derived. In section 4 we discuss restricted
forms of the variational principles derived in sections 3.3 and 3.4. Section 5 contains
a discussion of applications of the Rayleigh–Ritz linear trial functions in the variational
principles obtained in section 3.

2. The operatorsB̂(E) and R̂(E)

We consider a process governed by the wave equation

[Ĥ − E]9(E, r) = 0 (1)

in which a particle of a given real energyE moves in a real, local, spin-independent, in
general non-central potentialV . In the non-relativistic case discussed in this paper the
HamiltonianĤ has the form

Ĥ = − h̄
2

2m
∇2+ V (r) (2)

and the wave equation (1) reads[
− h̄

2

2m
∇2+ V (r)− E

]
9(E, r) = 0. (3)

In accordance with the philosophy of theR-matrix method, we restrict our considerations
to a strictly delimited volumeV enclosed by a surfaceS (assumed to consist of a finite
number of sufficiently smooth pieces). We wish to find a homogeneous boundary condition
satisfied onS by solutions of equation (1).

Before proceeding further, we establish a notational convention. In the following,r
is a position vector of a point in the volumeV. If the point r lies on the surfaceS, we
shall denote this using the symbolρ instead ofr. To denote volume and surface integrals
containing products of two functions, we shall use the following notation

〈f |g〉 ≡
∫
V

d3r f ∗(r)g(r) (f |g) ≡
∫
S

d2ρ f ∗(ρ)g(ρ) (4)

where the asterisk denotes the complex conjugation. Here d3r is an infinitesimal volume
element around the pointr and d2ρ is an infinitesimalscalar surface element around the
pointρ. We also define a surface Dirac delta functionδ(2)(ρ−ρ′) so that for any reasonable
function f (ρ) defined on the surfaceS one has∫

S
d2ρ′ δ(2)(ρ− ρ′)f (ρ′) = f (ρ). (5)

In what follows, we shall denote byD(E) a set of all solutions of equation (1)
corresponding to the fixedreal energyE. Similarly, we shall denote byDS(E) a set
of surface parts of functions belonging toD(E). In other words, if the function9(E, r) is
from D(E), then the surface function9(E,ρ) is in DS(E). Let 9(E, r) and9 ′(E, r) be
two arbitrary functions fromD(E). Applying the Green integration theorem we have

〈Ĥ9 ′|9〉 − 〈9 ′|Ĥ9〉 = h̄2

2m
(9 ′|∇n9)− h̄2

2m
(∇n9 ′|9) (6)
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where∇n9(E,ρ) denotes the outward normal derivative of the function9(E, r) at the
surface pointρ. In virtue of the reality ofE the left-hand side of this equation vanishes
yielding

(9 ′|∇n9) = (∇n9 ′|9). (7)

In equation (7) it may be formally interpreted that the normal derivative operator∇n, when
acting on functions fromDS(E), is Hermitean with respect to the surface scalar product
( | ).

To proceed further we observe that since any linear operator on the domainDS(E) may
be represented by some integral operator, we have

∇n9(E,ρ) = B̂(E)9(E,ρ) (8)

or equivalently

∇n9(E,ρ) =
∫
S

d2ρ′ B(E,ρ,ρ′)9(E,ρ′) (9)

whereB̂(E) is a Hermitean integral operator defined on the surfaceS and

B(E,ρ,ρ′) = B∗(E,ρ′,ρ) (10)

is an associated Hermitean integral kernel. It must be emphasized that the operators∇n and
B̂(E) arenot identical since for an arbitrary function8(r), in general, we have

∇n8(ρ) 6= B̂(E)8(ρ) (11)

unless8(r) is fromD(E). In applications, instead of the kernelB(E,ρ,ρ′), it is customary
to use a kernelR(E,ρ,ρ′) associated with the operator̂R(E) = B̂−1(E). For any function
9(E, r) from D(E) we have on the surfaceS

9(E,ρ) = R̂(E)∇n9(E,ρ) (12)

or equivalently

9(E,ρ) =
∫
S

d2ρ′R(E,ρ,ρ′)∇n9(E,ρ′). (13)

Since the operator̂R(E) is the inverse of the operator̂B(E), the kernelsR(E,ρ,ρ′) and
B(E,ρ,ρ′) are reciprocal in the sense of∫
S

d2ρ′′R(E,ρ,ρ′′)B(E,ρ′′,ρ′) =
∫
S

d2ρ′′ B(E,ρ,ρ′′)R(E,ρ′′,ρ′) = δ(2)(ρ− ρ′). (14)

By virtue of the Hermicity ofB(E,ρ,ρ′) the kernelR(E,ρ,ρ′) is also Hermitean

R(E,ρ,ρ′) = R∗(E,ρ′,ρ). (15)

Let {8i(ρ)} be an orthonormal, in the sense of the surface scalar product( | ), basis
set spanning the surfaceS. In this basis the kernelsB(E,ρ,ρ′) andR(E,ρ,ρ′) have
expansions

B(E,ρ,ρ′) =
∑

all i, j

8i(ρ)(8i |B̂8j)8∗j (ρ′) (16)

R(E,ρ,ρ′) =
∑

all i, j

8i(ρ)(8i |R̂8j)8∗j (ρ′) (17)

where the matrix elements

(8i |B̂8j) ≡
∫
S

d2ρ

∫
S

d2ρ′8∗i (ρ)B(E,ρ,ρ′)8j (ρ′) (18)
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and

(8i |R̂8j) ≡
∫
S

d2ρ

∫
S

d2ρ′8∗i (ρ)R(E,ρ,ρ′)8j (ρ′) (19)

form Hermitean matricesB(E) and R(E) = B−1(E), respectively. The matrixR(E) is
called theR-matrix for equation (1) in the representation{8i(ρ)}.

Consider now a set of those functions{9i(E, r)} from D(E) that have constant
logarithmic normal derivatives on the surfaceS

∇n9i(E,ρ)− bi(E)9i(E,ρ) = 0 (20)

(apart from possible incidental degeneracies, the constantsbi(E) will differ for different
functions9i(E, r)). Because of equation (8), we may equivalently write

B̂(E)9i(E,ρ)− bi(E)9i(E,ρ) = 0. (21)

In equation (21) it may be interpreted that the surface functions{9i(E,ρ)} are
eigenfunctions of the operator̂B(E) and that{bi(E)} are corresponding eigenvalues. Since
the operatorB̂(E) is Hermitean, its eigenvalues are real and eigenfunctions corresponding
to different eigenvalues are orthogonal over the surfaceS. In what follows, we shall assume
that they are normalized to unity over the surfaceS and that eigenfunctions corresponding to
degenerate eigenvalues (if such exist) are also mutually orthogonal. Then for two arbitrary
eigenfunctions ofB̂(E) one has

(9i |9j) = δij . (22)

The eigenfunctions{9i(E,ρ)} form a complete set spanning the surfaceS and with the
normalization (22) the corresponding closure relation is∑

all i

9i(E,ρ)9
∗
i (E,ρ

′) = δ(2)(ρ− ρ′). (23)

With the help of the eigenfunctions{9i(E,ρ)} and the corresponding eigenvalues{bi(E)}
we may reconstruct the kernelsB(E,ρ,ρ′) and R(E,ρ,ρ′). Indeed, by virtue of
equations (9) and (20) we have∫

S
d2ρ′ B(E,ρ,ρ′)9i(E,ρ′) = bi(E)9i(E,ρ) (24)

which implies a spectral representation of the kernelB(E,ρ,ρ′)

B(E,ρ,ρ′) =
∑
all i

9i(E,ρ)bi(E)9
∗
i (E,ρ

′). (25)

Similarly, for the kernelR(E,ρ,ρ′) we have the eigenvalue equation∫
S

d2ρ′R(E,ρ,ρ′)9i(E,ρ′) = b−1
i (E)9i(E,ρ) (26)

and the spectral expansion

R(E,ρ,ρ′) =
∑
all i

9i(E,ρ)b
−1
i (E)9

∗
i (E,ρ

′). (27)
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3. Construction of variational principles

3.1. The variational principle for eigenvalues ofB̂(E)

In this subsection we shall attempt to solve the following problem: find variational estimates
of eigenvalues of the operator̂B(E), the real quantities defined directly by equations (20)
and (21) and indirectly (because these equations contain9i(E,ρ) and its normal derivative)
by equation (1). This is the variational problem with constraints and may be solved by using
the Lagrange method of undetermined multipliers. Following the suggestion of Ra¸seev [41],
we use the general recipe of Gerjuoyet al [50] and construct a functional (for the sake of
brevity, hereafter we shall omit indices at eigenvalues, eigenfunctions and related quantities)

F [b, λ,3,9] = b + (λ|∇n9 − b9)+ 〈3|[Ĥ − E]9〉. (28)

Hereb is some number (not necessarily real),λ(ρ) is an arbitrary well behaving function
defined on the surfaceS while9(r) and3(r) are arbitrary well behaving functions defined
in V. The auxiliary functionsλ(ρ) and3(r) play a role of Lagrange multipliers (or, more
correctly, Lagrange functions) incorporating the constraints (20) and (1), respectively. If
9(r) coincides with the eigenchannel function9(E, r) and if b simultenously equals the
corresponding logarithmic derivativeb(E), then

F [b(E), λ,3,9] = b(E) (29)

irrespective of the forms of the Lagrange functionsλ(ρ) and3(r). According to Gerjuoy
et al [50], there exist such functionsλ(ρ) and3(r) that the functional (28) is stationary
for small arbitrary variations ofb and9(r) aroundb(E) and9(E, r),

δb = b − b(E) δ9(r) = 9(r)−9(E, r) (30)

and small arbitrary variations of the Lagrange functionsλ(ρ) and3(r) aroundλ(ρ) and
3(r),

δλ(ρ) = λ(ρ)− λ(ρ) δ3(r) = 3(r)−3(r) (31)

i.e.

δF [b, λ,3,9] = 0. (32)

We shall find the functionsλ(ρ) and3(r) and show that they are closely related to the
eigenfunction9(E, r). We have

δF [b, λ,3,9] = δb + (δλ|∇n9 − b9)− δb(λ|9)+ (λ|∇nδ9 − bδ9)
+〈δ3|[Ĥ − E]9〉 + 〈3|[Ĥ − E]δ9〉. (33)

Because of equations (20) and (1), the second and fifth terms on the right-hand side vanish
and equation (33) simplifies to the form

δF [b, λ,3,9] = δb[1− (λ|9)] + (λ|∇nδ9 − bδ9)+ 〈3|[Ĥ − E]δ9〉. (34)

With the aid of the Green integration theorem, the last term on the right-hand side of this
equation may be transformed in the following way

〈3|[Ĥ − E]δ9〉 = 〈[Ĥ − E]3|δ9〉 + h̄2

2m
(∇n3|δ9)− h̄2

2m
(3|∇nδ9) (35)

and this allows us to rewrite the first variation of the functional (28) as

δF [b, λ,3,9] = δb[1− (λ|9)] +
(
h̄2

2m
∇n3− bλ

∣∣∣∣δ9)
+
(
λ− h̄2

2m
3

∣∣∣∣∇nδ9)+ 〈[Ĥ − E]3|δ9〉. (36)
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In view of the arbitrariness ofδb, δ9(r) and∇nδ9(ρ), from equations (32) and (36) we
have

1− (λ|9) = 0 (37)

[Ĥ − E]3(r) = 0 in V (38)

λ(ρ)− h̄2

2m
3(ρ) = 0 onS (39)

and

h̄2

2m
∇n3(ρ)− b(E)λ(ρ) = 0 onS. (40)

From the last two equations one has

∇n3(ρ)− b(E)3(ρ) = 0 (41)

λ(ρ) = h̄2

2m
3(ρ). (42)

It follows from equations (38) and (41) that the function3(r) satisfies exactly the same
equation inV and the same boundary condition onS as the eigenfunction9(E, r) does
and therefore one maychoose

3(r) = γ9(E, r) (43)

whereγ is a constant and is to be determined. (That this is indeed ourchoice is illustrated
by the fact that a time-reversed functionT̂ 9(E, r), whereT̂ is the time-reversal operator,
also satisfies the Schrödinger equation (1) and the boundary condition (20).) To findγ we
utilize equation (42) and the condition (37) obtaining

γ = 2m

h̄2

1

(9|9) (44)

hence

3(r) = 2m

h̄2

1

(9|9)9(E, r) (45)

and

λ(ρ) = 1

(9|9)9(E,ρ). (46)

The relations (45) and (46) allow us to reduce a number of arguments of the functional
(28). Let uschoosea class of Lagrange functionsλ(ρ) and3(r) such that

3(r) = 2m

h̄2

1

(9|9)9(r) (47)

λ(ρ) = 1

(9|9)9(ρ). (48)

With this natural choice the functional (28) becomes

F [9] = (9|∇n9)
(9|9) +

2m

h̄2

〈9|[Ĥ − E]9〉
(9|9) . (49)

As follows from the method of its construction, this functional is stationary for small
arbitrary variations of9(r) about9(E, r) and its stationary value isb(E). We also observe
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that application of the Green integration theorem to the volume integral in equation (49)
gives

F [9] = (∇n9|9)
(9|9) +

2m

h̄2

〈[Ĥ − E]9|9〉
(9|9) . (50)

Comparison of this equation with equation (49) shows that

F [9] = F ∗[9] (51)

i.e. the functional (49) is real for any trial function9(r). This is a desirable property since
the value of this functional is an estimate of the real quantityb(E).

Summarizing, we have the following unrestricted variational principle for eigenvalues
of the operatorB̂(E)

b(E) = stat

{
(9|∇n9)
(9|9) +

2m

h̄2

〈9|[Ĥ − E]9〉
(9|9)

}
. (52)

Equation (52) is the celebrated Kohn variational principle [11] and has been extensively
used in variational eigenchannelR-matrix calculations in atomic physics [28–44].

3.2. The variational principle for eigenvalues ofR̂(E)

In this subsection we shall derive a functional whose stationary values are eigenvalues of the
operatorR̂(E). The derivation is based on the observations that eigenvalues ofR̂(E) are
reciprocals of eigenvalues of̂B(E) and that the boundary condition (20) may be rewritten
in the form

∇n9(E,ρ)− [b−1(E)]−19(E,ρ) = 0. (53)

Consider a functional

F [b−1, λ,3,9] = b−1+ (λ|∇n9 − (b−1)−19)+ 〈3|[Ĥ − E]9〉 (54)

whereb−1 is some number,λ(ρ) is a sufficiently regular function defined on the surface
S while 3(r) and9(r) are sufficiently regular functions defined in the volumeV. The
auxiliary functionsλ(ρ) and3(r) are Lagrange functions for the problem at hand and
incorporate the constraints (53) and (1) defining eigenvaluesb(E) and eigenfunctions
9(E, r). The first variation of the functional (54) produced by small variations of its
arguments aroundb−1(E), λ(ρ), 3(r) and9(E, r), respectively, is

δF [b−1, λ,3,9] = δb−1+ δb−1b2(λ|9)+ (λ|∇nδ9 − bδ9)+ 〈3|[Ĥ − E]δ9〉 (55)

(hereδb−1 meansδ(b−1) andnot (δb)−1) and, after application of the Green formula, may
be rewritten as

δF [b−1, λ,3,9] = δb−1[1+ b2(λ|9)] +
(
h̄2

2m
∇n3− bλ

∣∣∣∣δ9)
+
(
λ− h̄2

2m
3

∣∣∣∣∇nδ9)+ 〈[Ĥ − E]3|δ9〉. (56)

We stipulate that the functional (54) should be stationary for small variations of its arguments
around their sought forms

δF [b−1, λ,3,9] = 0 (57)
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hence, one obtains

1+ b2(E)(λ|9) = 0 (58)

[Ĥ − E]3(r) = 0 in V (59)

h̄2

2m
∇n3(ρ)− b(E)λ(ρ) = 0 onS (60)

and

λ(ρ)− h̄2

2m
3(ρ) = 0 onS. (61)

Equations (60) and (61) give

∇n3(ρ)− b(E)3(ρ) = 0 (62)

and

λ(ρ) = h̄2

2m
b−1(E)∇n3(ρ). (63)

Comparison of equations (59) and (62) with equations (1) and (20) shows that the Lagrange
function3(r) may be chosen in the form

3(r) = γ9(E, r) (64)

where the constantγ is to be determined. After utilizing equations (58), (61) and (64) one
finds

γ = −2m

h̄2 b
−2(E)

1

(9|9) = −
2m

h̄2

1

(∇n9|∇n9) (65)

hence

3(r) = −2m

h̄2

1

(∇n9|∇n9)9(E, r) (66)

and, from equations (63) and (66),

λ(ρ) = − (9|9)
(9|∇n9)(∇n9|∇n9)∇n9(E,ρ) (67)

where we have made use of the fact that

b−1(E) = (9|9)
(9|∇n9) =

(9|9)
(∇n9|9). (68)

Now let us assume thatb−1 is given by

b−1 = (9|9)
(∇n9|9)

(69)

and let us restrict ourselves to those Lagrange functionsλ(ρ) and3(r) that may be written
as

λ(ρ) = − (9|9)
(9|∇n9)(∇n9|∇n9)

∇n9(ρ) (70)

3(r) = −2m

h̄2

1

(∇n9|∇n9)
9(r). (71)

Two comments are appropriate here. First, in general, the estimate (69) ofb−1(E) will
not be real although the latter quantity is real itself. Secondly, if the trial function9(r)
differs from the eigenfunction9(E, r) by a first-order quantity (i.e. if it is a reasonable
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estimate of9(E, r)), then it is clear thatb−1, λ(ρ) and3(r) defined above also differ
from b−1(E), λ(ρ) and3(r) defined, respectively, by equations (68), (67) and (66) by
first-order quantities. Substitution of the particular forms (69)–(71) ofb−1, λ(ρ) and3(r)
into equation (54) gives

F [9] = (∇n9|9)
(∇n9|∇n9)

− 2m

h̄2

〈9|[Ĥ − E]9〉
(∇n9|∇n9)

. (72)

The same functional will be obtained if, instead ofb−1 defined by equation (69), we use

b−1 = (∇n9|9)
(∇n9|∇n9)

(73)

and the Lagrange functions (70) and (71). Moreover, making use of the Green theorem to
transform the right-hand side of equation (72), we obtain

F [9] = (9|∇n9)
(∇n9|∇n9)

− 2m

h̄2

〈[Ĥ − E]9|9〉
(∇n9|∇n9)

(74)

and comparison of this equation with equation (72) shows that the functionalF [9] derived
is real for any trial function9,

F [9] = F ∗[9]. (75)

Thus, we have the variational principle for eigenvalues of the operatorR̂(E) (reciprocals
of eigenvalues of the operator̂B(E))

b−1(E) = stat

{
(∇n9|9)
(∇n9|∇n9)

− 2m

h̄2

〈9|[Ĥ − E]9〉
(∇n9|∇n9)

}
. (76)

Equation (76) is an analogue of the Kohn variational principle (52) derived in the preceding
subsection.

3.3. The variational principles for matrix elements ofR̂(E) and their reciprocals

In this subsection we shall derive variational principles for matrix elements of the operator
R̂(E) between two sufficiently regular functions8(ρ) and8′(ρ) defined on the surfaceS.
To this end we introduce two functions9(E, r) and9 ′(E, r) from D(E) satisfying on the
surfaceS inhomogeneous Neumannboundary conditions

∇n9(E,ρ) = 8(ρ) ∇n9 ′(E,ρ) = 8′(ρ). (77)

(The functions9(E, r) used throughout this and the following subsections have nothing
whatever to do with eigenfunctions of the operatorsB̂(E) and R̂(E) denoted in the two
preceding subsections with the same symbols.) Since the functions9(E, r) and9 ′(E, r)
belong toD(E), equations (77) may be equivalently rewritten in the form

9(E,ρ) = R̂(E)8(ρ) 9 ′(E,ρ) = R̂(E)8′(ρ). (78)

Our aim is to construct a functional whose stationary value is(8|R̂8′). We shall treat
equations (1), (77) and (78) as constraints and seek the functional in the form

F [8,8′; R̂, χ, λ,3,9 ′] = (8|R̂8′)+ (χ |9 ′ − R̂8′)
+(λ|∇n9 ′ −8′)+ 〈3|[Ĥ − E]9 ′〉. (79)

Here R̂ is some operator (not necessarily Hermitean) acting on functions defined on the
surfaceS, χ(ρ) andλ(ρ) are well behaving and otherwise completely arbitrary functions
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defined on the surfaceS, while 9 ′(r) and 3(r) are arbitrary well behaving functions
defined inV. The functionsχ(ρ), λ(ρ) and3(r) are Lagrange functions for the problem
under consideration. Suppose now that the functional (79) is subjected to small arbitrary
variations of its arguments. The first variation of the functional is

δF [8,8′; R̂, χ, λ,3,9 ′] = (8|δR̂8′)+ (χ |δ9 ′ − δR̂8′)
+(λ|∇nδ9 ′)+ 〈3|[Ĥ − E]δ9 ′〉 (80)

where we have utilized the fact that terms containing variationsδχ(ρ), δλ(ρ) and δ3(r)
must vanish if the constraints (1), (77) and (78) are to be satisfied. Application of the Green
theorem to the last term on the right-hand side of equation (80) allows us to rewrite the first
variation of the functional in the form

δF [8,8′; R̂, χ, λ,3,9 ′] = (8− χ |δR̂8′)+
(
χ + h̄2

2m
∇n3

∣∣∣∣δ9 ′)
+
(
λ− h̄2

2m
3

∣∣∣∣∇nδ9 ′)+ 〈[Ĥ − E]3|δ9 ′〉. (81)

On stipulating

δF [8,8′; R̂, χ, λ,3,9 ′] = 0 (82)

we obtain

[Ĥ − E]3(r) = 0 in V (83)

8(ρ)− χ(ρ) = 0 onS (84)

χ(ρ)+ h̄2

2m
∇n3(ρ) = 0 onS (85)

and

λ(ρ)− h̄2

2m
3(ρ) = 0 onS (86)

hence, it follows that

χ(ρ) = 8(ρ) (87)

and

∇n3(ρ) = −2m

h̄2 8(ρ). (88)

Equations (83) and (88) show that the function3(r) satisfies the same equation in the
volumeV as the wavefunction9(E, r) does, and the inhomogeneous Neumann boundary
condition which differs from the boundary condition (77) satisfied by the latter function
only by the multiplicative factor−2m/h̄2 in the inhomogeneous term. This implies that we
may choose3(r) in the form

3(r) = −2m

h̄2 9(E, r) (89)

and consequently (cf equation (86))

λ(ρ) = −9(E,ρ). (90)

Let us restrict our discussion to those Lagrange functionsχ(ρ), λ(ρ) and3(r) which may
be written in the forms

χ(ρ) = 8(ρ) (91)

λ(ρ) = −9(ρ) (92)
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and

3(r) = −2m

h̄2 9(r). (93)

It is clear that if the functions9(r) and9 ′(r) differ from 9(E, r) and9 ′(E, r) by first-
order quantities, the Lagrange functionsλ(ρ) and3(r) defined above will also differ from
λ(ρ) and3(r) defined, respectively, by equations (90) and (89), by first-order quantities.
Substituting these particular forms of the Lagrange functions to equation (79) we obtain the
functional

F [8,8′;9,9 ′] = (8|9 ′)+ (9|8′)− (9|∇n9 ′)− 2m

h̄2 〈9|[Ĥ − E]9 ′〉. (94)

By applying the Green theorem to the volume integral appearing on the right-hand side of
the above formula, it may be easily verified that the functional (94) possesses a symmetry
property

F [8,8′;9,9 ′] = F ∗[8′,8;9 ′, 9]. (95)

This functional is stationary for small but otherwise arbitrary variations of9(r) and9 ′(r)
around9(E, r) and9 ′(E, r), respectively, and its stationary value is(8|R̂8′). Therefore,
we have the variational principle

(8|R̂8′) = stat

{
(8|9 ′)+ (9|8′)− (9|∇n9 ′)− 2m

h̄2 〈9|[Ĥ − E]9 ′〉
}
. (96)

It was derived previously, in an entirely different way, by Shimamura [26].
We may also attempt to construct a variational principle for(8|R̂8′)−1. To this end

we treat equations (1), (77) and (78) as constraints and consider a functional

F [8,8′; R̂, χ, λ,3,9 ′] = 1

(8|R̂8′)
+ (χ |9 ′ − R̂8′)

+(λ|∇n9 ′ −8′)+ 〈3|[Ĥ − E]9 ′〉. (97)

As before, we seek such particular formsχ(ρ), λ(ρ) and3(r) of the Lagrange functions
χ(ρ), λ(ρ) and3(r), that the first variation of the functional (97) due to small variations of

its argumentsR̂, χ(ρ), λ(ρ), 3(r) and9 ′(r) in the neighbourhood of̂R(E), χ(ρ), λ(ρ),
3(r) and9 ′(E, r) vanishes. We have

δF [8,8′; R̂, χ, λ,3,9 ′] = − (8|δR̂8
′)

(8|R̂8′)2
+ (χ |δ9 ′ − δR̂8′)

+(λ|∇nδ9 ′)+ 〈3|[Ĥ − E]δ9 ′〉 (98)

and further, after application of the Green theorem,

δF [8,8′; R̂, χ, λ,3,9 ′] = −
[
(8|δR̂8′)
(8|R̂8′)2

+ (χ |δR̂8′)
]
+
(
χ + h̄2

2m
∇n3

∣∣∣∣δ9 ′)
+
(
λ− h̄2

2m
3

∣∣∣∣∇nδ9 ′)+ 〈[Ĥ − E]3|δ9 ′〉. (99)

On stipulating

δF [8,8′; R̂, χ, λ,3,9 ′] = 0 (100)
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we obtain

[Ĥ − E]3(r) = 0 in V (101)
1

(R̂8′|8)2
8(ρ)+ χ(ρ) = 0 onS (102)

χ(ρ)+ h̄2

2m
∇n3(ρ) = 0 onS (103)

and

λ(ρ)− h̄2

2m
3(ρ) = 0 onS (104)

hence

χ(ρ) = − 1

(R̂8′|8)2
8(ρ) (105)

and

∇n3(ρ) = 2m

h̄2

1

(R̂8′|8)2
8(ρ). (106)

Before the next step, we rewrite equations (105) and (106) in more convenient forms

χ(ρ) = − 1

(9 ′|8)(R̂8′|8)
8(ρ) (107)

and

∇n3(ρ) = 2m

h̄2

1

(8′|9)(9 ′|8)8(ρ) (108)

where we have made use of the boundary conditions (78) and the Hermicity of the operator
R̂(E). Comparison of equations (101) and (108) with equations (1) and (77) shows that
we may choose

3(r) = 2m

h̄2

1

(8′|9)(9 ′|8)9(E, r) (109)

and consequently

λ(ρ) = 1

(8′|9)(9 ′|8)9(E,ρ). (110)

The dependence of the sought forms of the Lagrange functionsχ(ρ), λ(ρ), and3(ρ) on
the exact solutions9(E, r) and9 ′(E, r) of the boundary-value problem constituted by
equations (1) and (77) suggests that we may restrict ourselves to the following trial forms
of the Lagrange functions

χ(ρ) = − 1

(9 ′|8)(R̂8′|8)
8(ρ) (111)

λ(ρ) = 1

(8′|9)(9 ′|8)9(ρ) (112)

and

3(r) = 2m

h̄2

1

(8′|9)(9 ′|8)9(r). (113)
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Substitution of these particular forms ofχ(ρ), λ(ρ) and3(r) to the definition (79) gives a
fractional functional

F [8,8′;9,9 ′] = (9|∇n9 ′)
(8|9 ′)(9|8′) +

2m

h̄2

〈9|[Ĥ − E]9 ′〉
(8|9 ′)(9|8′) (114)

possessing the symmetry property (95). The sought variational principle is

(8|R̂8′)−1 = stat

{
(9|∇n9 ′)

(8|9 ′)(9|8′) +
2m

h̄2

〈9|[Ĥ − E]9 ′〉
(8|9 ′)(9|8′)

}
(115)

hence, it also follows that

(8|R̂8′) = stat

{
(8|9 ′)(9|8′)

(9|∇n9 ′)+ (2m/h̄2)〈9|[Ĥ − E]9 ′〉

}
. (116)

Equations (115) and (116) are independent of the normalization of the trial functions9(r)
and9 ′(r). A particular form of the variational principle (115) with8(ρ) = 8′(ρ) and
9(r) = 9 ′(r) was considered by Nesbet [19, 20].

3.4. The variational principles for matrix elements ofB̂(E) and their reciprocals

Finally, we may construct variational principles for a matrix element(8|B̂8′) and its
inverse,(8|B̂8′)−1, whereB̂(E) is the integral operator defined in section 2 while8(ρ)
and8′(ρ) are any two reasonable functions defined on the surfaceS. For this purpose,
we introduce two functions9(E, r) and9 ′(E, r) belonging toD(E) and satisfying on the
surfaceS inhomogeneous Dirichletboundary conditions

9(E,ρ) = 8(ρ) 9 ′(E,ρ) = 8′(ρ). (117)

Acting on both sides of equations (117) with the operatorB̂(E) and utilizing equation (8)
we may rewrite these boundary conditions in the form

∇n9(E,ρ) = B̂(E)8(ρ) ∇n9 ′(E,ρ) = B̂(E)8′(ρ). (118)

To derive the variational principle for(8|B̂8′), we treat equations (1), (117) and (118) as
constraints and consider a functional

F [8,8′; B̂, χ, λ,3,9 ′] = (8|B̂8′)+ (χ |∇n9 ′ − B̂8′)+ (λ|9 ′ −8′)+ 〈3|[Ĥ − E]9 ′〉.
(119)

Here B̂ is a linear integral operator, possibly non-Hermitean, acting on functions defined
on the surfaceS, χ(ρ) andλ(ρ) belong to a class of well behaving functions defined on
S while 3(r) and9 ′(r) are some reasonable functions defined in the volumeV. The first

variation of the functional (119) due to variations ofB̂, χ(ρ), λ(ρ), 3(r) and9 ′(r) around
B̂(E), χ(ρ), λ(ρ), 3(r) and9 ′(E, r), respectively, is

δF [8,8′; B̂, χ, λ,3,9 ′] = (8|δB̂8′)+ (χ |∇nδ9 − δB̂8′)+ (λ|δ9 ′)+ 〈3|[Ĥ − E]δ9 ′〉
(120)

and, after application of the Green theorem to the volume integral, may be rewritten as

δF [8,8′; B̂, χ, λ,3,9 ′] = (8− χ |δB̂8′)+
(
λ+ h̄2

2m
∇n3

∣∣∣∣ δ9 ′)
+
(
χ − h̄2

2m
3

∣∣∣∣∇nδ9 ′)+ 〈[Ĥ − E]3|δ9 ′〉. (121)
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On stipulating

δF [8,8′; B̂, χ, λ,3,9 ′] = 0 (122)

we obtain a set of conditions which must be satisfied by the sought functionsχ(ρ), λ(ρ)
and3(r)

[Ĥ − E]3(r) = 0 in V (123)

8(ρ)− χ(ρ) = 0 onS (124)

λ(ρ)+ h̄2

2m
∇n3(ρ) = 0 onS (125)

and

χ(ρ)− h̄2

2m
3(ρ) = 0 onS (126)

hence, it follows that

χ(ρ) = 8(ρ) (127)

and

3(ρ) = 2m

h̄2 8(ρ). (128)

Comparison of equations (123) and (128) with equations (1) and (117) shows that we may
choose

3(r) = 2m

h̄2 9(E, r) (129)

and consequently

λ(ρ) = −∇n9(E,ρ). (130)

The expressions (130), (127) and (129) for the Lagrange functionsχ(ρ), λ(ρ) and3(r)
suggest the following natural choices of their trial forms

χ(ρ) = 8(ρ) (131)

λ(ρ) = −∇n9(ρ) (132)

and

3(r) = 2m

h̄2 9(r) (133)

yielding the functional

F [8,8′;9,9 ′] = (8|∇n9 ′)+ (∇n9|8′)− (∇n9|9 ′)+ 2m

h̄2 〈9|[Ĥ − E]9 ′〉. (134)

On applying the Green integration formula to the volume integral on the right-hand side
of this equation, one easily shows that the functional (134) satisfies the symmetry relation
(95). Concluding, we have the variational principle

(8|B̂8′) = stat

{
(8|∇n9 ′)+ (∇n9|8′)− (∇n9|9 ′)+ 2m

h̄2 〈9|[Ĥ − E]9 ′〉
}
. (135)

It remains to construct the variational principle for(8|B̂8′)−1. We treat equations (1),
(117) and (118) as constraints and consider the functional

F [8,8′; B̂, χ, λ,3,9 ′] = 1

(8|B̂8′)
+ (χ |∇n9 ′ − B̂8′)

+(λ|9 ′ −8′)+ 〈3|[Ĥ − E]9 ′〉. (136)
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Its first variation due to variations of its arguments around their sought forms

δF [8,8′; B̂, χ, λ,3,9 ′] = − (8|δB̂8
′)

(8|B̂8′)2
+ (χ |∇nδ9 ′ − δB̂8′)

+(λ|δ9 ′)+ 〈3|[Ĥ − E]δ9 ′〉 (137)

may be rewritten, on transforming the volume integral, in the form

δF [8,8′; B̂, χ, λ,3,9 ′] = −
[
(8|δB̂8′)
(8|B̂8′)2

+ (χ |δB̂8′)
]
+
(
λ+ h̄2

2m
∇n3

∣∣∣∣δ9 ′)
+
(
χ − h̄2

2m
3

∣∣∣∣∇nδ9 ′)+ 〈[Ĥ − E]3|δ9 ′〉. (138)

On attempting to have the variational principle, we stipulate

δF [8,8′; B̂, χ, λ,3,9 ′] = 0 (139)

obtaining the conditions

[Ĥ − E]3(r) = 0 in V (140)
1

(B̂8′|8)2
8(ρ)+ χ(ρ) = 0 onS (141)

λ(ρ)+ h̄2

2m
∇n3(ρ) = 0 onS (142)

and

χ(ρ)− h̄2

2m
3(ρ) = 0 onS (143)

hence

χ(ρ) = − 1

(B̂8′|8)2
8(ρ) (144)

and

3(ρ) = −2m

h̄2

1

(B̂8′|8)2
8(ρ). (145)

Utilizing the boundary conditions (118) and the Hermicity of the operatorB̂(E), it is
convenient to rewrite equations (144) and (145) in the forms

χ(ρ) = − 1

(∇n9 ′|8)(B̂8′|8)
8(ρ) (146)

and

3(ρ) = −2m

h̄2

1

(8′|∇n9)(∇n9 ′|8)8(ρ). (147)

On comparing equations (140) and (147) with equations (1) and (117) we find that the
function3(r) may be chosen in the form

3(r) = −2m

h̄2

1

(8′|∇n9)(∇n9 ′|8)9(E, r) (148)

and consequently (cf equation (142))

λ(ρ) = 1

(8′|∇n9)(∇n9 ′|8)∇n9(E,ρ). (149)
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This suggests the following optimal choices of the trial forms of the Lagrange functions
χ(ρ), λ(ρ) and3(r)

χ(ρ) = − 1

(∇n9 ′|8)(B̂8′|8)
8(ρ) (150)

λ(ρ) = 1

(8′|∇n9)(∇n9 ′|8)
∇n9(ρ) (151)

and

3(r) = −2m

h̄2

1

(8′|∇n9)(∇n9 ′|8)
9(r) (152)

leading to a symmetric (in the sense of equation (95)) fractional functional

F [8,8′;9,9 ′] = (∇n9|9 ′)
(8|∇n9 ′)(∇n9|8′)

− 2m

h̄2

〈9|[Ĥ − E]9 ′〉
(8|∇n9 ′)(∇n9|8′)

. (153)

Thus, the desired variational principle for(8|B̂8′)−1 is

(8|B̂8′)−1 = stat

{
(∇n9|9 ′)

(8|∇n9 ′)(∇n9|8′)
− 2m

h̄2

〈9|[Ĥ − E]9 ′〉
(8|∇n9 ′)(∇n9|8′)

}
. (154)

From equation (154) it also follows that

(8|B̂8′) = stat

{
(8|∇n9 ′)(∇n9|8′)

(∇n9|9 ′)− (2m/h̄2)〈9|[Ĥ − E]9 ′〉

}
. (155)

This result is obtained in a different way by Nesbet [20]. The variational principle (155)
has the advantage over (135) in being independent of the normalization of the trial functions
9(r) and9 ′(r).

4. Variational principles with constrained trial functions

In the course of the derivation of the variational principles presented in section 3, we have
not imposed any constraints on trial functions apart from a tacit reasonable assumption
that the functions and their first derivatives are continuous across any surface dividing
the volumeV into smaller subregions. It is interesting to investigate how the variational
principles derived above are influenced if we impose someadditional constraints on trial
functions used. At first, let us consider the variational principle for the matrix element
(8|R̂8′) discussed in section 3.3. There we have shown that the functional

F [8,8′;9,9 ′] = (8|9 ′)+ (9|8′)− (9|∇n9 ′)− 2m

h̄2 〈9|[Ĥ − E]9 ′〉 (156)

is stationary with respect to small and otherwise arbitrary variations of the trial functions
9(r) and9 ′(r) around9(E, r) and9 ′(E, r), respectively, where the latter functions are
defined as those particular solutions of the Schrödinger equation (1) in the volumeV that
on the enclosing surfaceS satisfy the inhomogeneous Neumann boundary conditions

∇n9(E,ρ) = 8(ρ) ∇n9 ′(E,ρ) = 8′(ρ). (157)

The stationary value of the functional (156) is the matrix element(8|R̂8′). We emphasize
that, in the general case discussed in section 3.3, the trial functions9(r) and9 ′(r) arenot
constrained to satisfy the same boundary conditions on the surfaceS as the exact functions
9(E, r) and9 ′(E, r) do. Let us, however, restrict our considerations to a class of those
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trial functions9(r) and9 ′(r) that on the surfaceS do satisfy the boundary conditions
(157), i.e. those that

∇n9(ρ) = 8(ρ) ∇n9 ′(ρ) = 8′(ρ). (158)

Then the second and third terms on the right-hand side of equation (156) cancel and the
functional becomes

F [8,8′;9,9 ′] = (8|9 ′)− 2m

h̄2 〈9|[Ĥ − E]9 ′〉 (159)

hence, we obtain the Jackson variational principle [12]

(8|R̂8′) = stat

{
(8|9 ′)− 2m

h̄2 〈9|[Ĥ − E]9 ′〉
}

(160)

where the trial functions are constrained to satisfy the boundary conditions (158).
Similar considerations may be carried out in the case of the variational principle for

the matrix element(8|B̂8′) derived in section 3.4. If in the variational principle (135)
we restrict a class of admissible trial functions to those that on the surfaceS satisfy the
inhomogeneous Dirichlet boundary conditions

9(ρ) = 8(ρ) 9 ′(ρ) = 8′(ρ) (161)

we obtain the analogy of the Jackson variational principle [45, 47]

(8|B̂8′) = stat

{
(8|∇n9 ′)+ 2m

h̄2 〈9|[Ĥ − E]9 ′〉
}
. (162)

In the similar way one may obtain restricted variational principles for(8|R̂8′)−1 and
(8|B̂8′)−1.

5. Use of the Rayleigh–Ritz trial functions

Variational principles derived in sections 3 and 4 provide a convenient way of finding
approximate values of the matrix elements and eigenvalues of the operatorsR̂(E) and
B̂(E). One may use a class of trial functions depending on some parameters and optimize
values of the latter by requiring that a relevant functional be stationary with respect to
small variations of the parameters. Subsequent substitution of the optimal (within the
class admitted) trial functions determined in this way into the functional gives a variational
estimate of the quantity considered.

Particularly useful in applications are the Rayleigh–Ritz trial functions of the form

9(r) =
∑
i

ciφi(r) (163)

where the coordinate functions{φi(r)} are chosen from a complete setX of functions
spanning the interior of the volumeV and the surfaceS. The coefficients{ci} are variational
parameters and must be determined. In the following subsections we shall use the Rayleigh–
Ritz trial functions to find variational estimates of matrix elements and eigenvalues of the
operatorsR̂(E) and B̂(E).
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5.1. The variational principle for matrix elements ofR̂(E)

As the first example, we shall use the Rayleigh–Ritz trial functions

9(r) =
N∑
i=1

ciφi(r) 9 ′(r) =
N∑
i=1

c′iφi(r) (164)

in the variational principle (96) for the matrix element(8|R̂8′). In equation (164)N is a
number (the same in both expansions) of coordinate functions used. Substitution of these
particular forms of the trial functions into functional (94) gives

F [8,8′; {c∗i }, {c′i}] =
N∑
i=1

c′i (8|φi)+
N∑
i=1

c∗i (φi |8′)

−
N∑

i,j=1

c∗i c
′
j (φi |∇nφj )−

2m

h̄2

N∑
i,j=1

c∗i c
′
j 〈φi |[Ĥ − E]φj 〉. (165)

Using a more convenient matrix notation we rewrite equation (165) in a compact form

F [f †,f ′; c†, c′] = f †c′ + c†f ′ − c†Sc′ (166)

wheref † and c† areN -dimensionalrow vectors with elements{f ∗i = (8|φi)} and {c∗i },
respectively,f ′ andc′ areN -dimensionalcolumnvectors with elements{f ′i = (φi |8′)} and
{c′i}, respectively, andS is a HermiteanN ×N matrix with elements

Sij = (φi |∇nφj )+ 2m

h̄2 〈φi |[Ĥ − E]φj 〉. (167)

The first variation of the functional (165) due to small variations of the vectorsc† andc′ is

δF [f †,f ′; c†, c′] = [f † − c†S]δc′ + δc†[f ′ − Sc′]. (168)

On stipulating

δF [f †,f ′; c†, c′] = 0 (169)

we obtain

f † − c†S = 0 f ′ − Sc′ = 0 (170)

hence

c† = f †S−1 c′ = S−1f ′. (171)

Substitution of these optimal forms of the vectorsc† and c′ into equation (166) yields a
variational estimate of the matrix element(8|R̂8′) (cf also [27, 19, 20])

(8| ˆ̃R8′) = f †S−1f ′ ≡
N∑

i,j=1

(8|φi)(S−1)ij (φj |8′). (172)

Since the functions8(ρ) and8′(ρ) are arbitrary, from equation (172) we obtain a variational
estimate of the kernelR(E,ρ,ρ′) (cf also [20])

R̃(E,ρ,ρ′) =
N∑

i,j=1

φi(ρ)(S−1)ijφ
∗
j (ρ
′) (173)

which is manifestly Hermitean.
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It is interesting that(8| ˆ̃R8′) and R̃(E,ρ,ρ′) may be conveniently written as ratios
of two determinants†. On utilizing equation (213) derived in the appendix, we find from
equations (172) and (173)

(8| ˆ̃R8′) = −
det

(
S f ′

f † 0

)
detS

(174)

and

R̃(E,ρ,ρ′) = −
det

(
S φ†(ρ′)
φ(ρ) 0

)
detS

(175)

whereφ(ρ) is anN -dimensionalrow vector with elements{φi(ρ)} andφ†(ρ′) is anN -
dimensionalcolumn vector with elements{φ∗i (ρ′)}.

If in the expansions (164)all basis functions from the complete setX are included, we
have anexact expansion of the kernelR(E,ρ,ρ′)

R(E,ρ,ρ′) =
∑

all i, j

φi(ρ)(S−1)ijφ
∗
j (ρ
′). (176)

Equations (172) and (173) may be derived in an alternative way if, instead of the
variational principle (96), one uses the variational principle (116). This agrees with results
obtained by Nesbet [19, 20]. We leave the derivation as an exercise to the reader.

5.2. The variational principle for matrix elements ofB̂(E)

Similar considerations lead us to a variational estimate of the kernelB(E,ρ,ρ′).
Substitution of the trial functions of the form (164) to the functional (134) gives

F [g†, g′; c†, c′] = g†c′ + c†g′ − c†Tc′ (177)

whereg† is anN -dimensionalrow vector with elements{g∗i = (8|∇nφi)}, g′ is anN -
dimensionalcolumn vector with elements{g′i = (∇nφi |8′)} and T is a HermiteanN × N
matrix with elements

Tij = (∇nφi |φj )− 2m

h̄2 〈φi |[Ĥ − E]φj 〉. (178)

Stipulation

δF [g†, g′; c†, c′] = 0 (179)

yields the following optimal forms of the vectors of the expansion coefficients

c† = g†T−1 c′ = T−1g′ (180)

hence, we obtain variational estimates of the matrix element(8|B̂8′)

(8| ˆ̃B8′) = g†T−1g′ ≡
N∑

i,j=1

(8|∇nφi)(T−1)ij (∇nφj |8′) (181)

and of the kernelB(E,ρ,ρ′)

B̃(E,ρ,ρ′) =
N∑

i,j=1

∇nφi(ρ)(T−1)ij∇nφ∗j (ρ′). (182)

† Other determinantal expressions related to theR-matrix theory are discussed in [53].
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It should be noticed that the kernel̃B(E,ρ,ρ′) obtained in this way is automatically
Hermitean.

Similar to the case discussed in the preceding subsection,(8| ˆ̃B8′) andB̃(E,ρ,ρ′) may
be conveniently expressed as ratios of determinants. Utilizing equations (213), (181) and
(182) we find

(8| ˆ̃B8′) = −
det

(
T g′

g† 0

)
detT

(183)

and

B̃(E,ρ,ρ′) = −
det

(
T ∇nφ†(ρ′)

∇nφ(ρ) 0

)
detT

(184)

where∇nφ(ρ) is anN -dimensionalrow vector with elements{∇nφi(ρ)} and∇nφ†(ρ′) is
anN -dimensionalcolumn vector with elements{∇nφ∗i (ρ′)}.

If all functions from the basis setX are included in the expansion (164), we have an
exact expansion of the kernelB(E,ρ,ρ′)

B(E,ρ,ρ′) =
∑

all i, j

∇nφi(ρ)(T−1)ij∇nφ∗j (ρ′). (185)

A derivation of equations (181) and (182) from the variational principle (155) is left to
the reader as an exercise.

5.3. The variational principle for eigenvalues ofB̂(E)

The Rayleigh–Ritz trial functions may also be used [28, 40] in the variational principle
for eigenvalues of the operator̂B(E) derived in section 3.1. To illustrate this, we seek
approximate eigenfunctions of̂B(E) in the form

9(r) =
N∑
i=1

ciφi(r). (186)

Substitution of this trial function to the functional (49) gives

F [c†, c] = c†Sc
c†Mc

(187)

where the vectorsc† andc are defined as in section 5.1, elements of the Hermitean matrix
S are defined as in equation (167) andM is a HermiteanN × N ‘surface’ overlap matrix
with elements

Mij = (φi |φj ). (188)

The first variation of the functional (187) due to small variations of the vectorsc† andc is

δF [c†, c] = δc†
[
(Sc)(c†Mc)− (Mc)(c†Sc)]

(c†Mc)2
+
[
(c†Mc)(c†S)− (c†Sc)(c†M)] δc

(c†Mc)2
.

(189)

To find optimal expansion coefficients{ci} we require

δF [c†, c] = 0 (190)
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which results in matrix equations

Sc = c†Sc
c†Mc

Mc c†S = c†Sc
c†Mc

c†M. (191)

Denoting

b̃ = c†Sc
c†Mc

(192)

we find that b̃ is an eigenvalue whilec and c† are the corresponding right and left
eigenvectors of generalized matrix eigenvalue problems

Sc = b̃Mc c†S = b̃c†M. (193)

The eigenvalue equations (193) must be handled with care since, in general, the rank of
the matrixM will be far smaller than the numberN of coordinate functions{φi(r)} included
in equation (186). This happens because a number of functions that are linearly independent
on the surfaceS is smaller than the number of functions spanning simultaneously the surface
S and the volumeV†. Therefore, it is very likely that the coordinate functions chosen will
be linearly dependenton the surfaceS and the determinant of the matrixM (a Gram
determinant for theN surface functions{φi(ρ)}) will vanish. In fact, thisshould be so if
our approximation of the function9(E, r) is to be equally good on the surfaceS and in
the interior of the volumeV.

Effective algorithms for solving singular eigenvalue problems of the form (193) were
worked out [54, 55] and computer codes based on Moler and Stewart’s algorithm [55] are
available (for instance [56], see also [32] cited in [28]). Once all eigenvalues{b̃k} and the
corresponding right eigenvectors{ck} for the eigenproblem (193) have been found, one may
obtain estimates of the kernelsB(E,ρ,ρ′) andR(E,ρ,ρ′). In analogy with the spectral
expansions (25) and (27) we have

B̃(E,ρ,ρ′) =
rank M∑
k=1

9k(ρ)b̃k9
∗
k(ρ
′) =

N∑
i,j=1

φi(ρ)

[ rank M∑
k=1

cikb̃kc
∗
jk

]
φ∗j (ρ

′) (194)

(cik is an ith element of the eigenvectorck) and

R̃(E,ρ,ρ′) =
rank M∑
k=1

9k(ρ)b̃
−1
k 9

∗
k(ρ
′) =

N∑
i,j=1

φi(ρ)

[ rank M∑
k=1

cikb̃
−1
k c
∗
jk

]
φ∗j (ρ

′). (195)

It must be emphasized that the estimates (194) and (195) of the kernelsB(E,ρ,ρ′)
andR(E,ρ,ρ′) are not variational estimates. Although the approximations{b̃k} of the
eigenvalues of the operator̂B(E) obtained by solving the matrix eigenvalue problem (193)
are correct to second order, the coefficients{cik} extracted from the eigenvectors{ck}, and
consequently our optimal approximations{9k(ρ)} of the surface eigenfunctions{9k(E,ρ)},
are good, by definition, only to first order. Therefore, the kernelsB̃(E,ρ,ρ′, E) and
R̃(E,ρ,ρ′, E) given by equations (194) and (195) will also have first-order errors. This
deficiency of methods based on variational determination of eigenvalues was already pointed
out by Kohn [11] in the context of theS-matrix theory.

† This is particularly well visible in one-dimensionalR-matrix problems when the volumeV is an interval. A
number of functions that are linearly independent on the surfaceS (two ends of the interval) is two but one needs
an infinite number of basis functions to span the interior of the interval and the ends.
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5.4. The variational principle for eigenvalues ofR̂(E)

In the last example, we shall use the Rayleigh–Ritz trial functions in the variational principle
for eigenvalues of the operator̂R(E). Substitution of the trial eigenfunction (186) to the
functional (74) gives

F [c†, c] = c†Tc
c†Nc

(196)

whereT is a HermiteanN ×N matrix with elements defined by equation (178) andN is a
HermiteanN ×N overlap matrix with elements

Nij = (∇nφi |∇nφj ). (197)

It must be emphasized that, even if we use the same coordinate functions as in the preceding
subsection, the rank of the matrixN may differ from the rank of the matrixM used there.
The condition

δF [c†, c] = 0 (198)

gives generalized matrix eigenvalue problems

Tc = b̃−1Nc c†T = b̃−1c†N (199)

where an eigenvalue

b̃−1 = c†Tc
c†Nc

(200)

is a variational estimate of some eigenvalue of the operatorR̂(E). The number of non-

trivial solutions of equations (199) equals the rank of the matrixN. If b̃−1
k and cik

denote, respectively, akth eigenvalue of the problem (199) and anith component of the
corresponding right eigenvectorck, in analogy with the spectral expansions (25) and (27)
we have approximations of the kernelsB(E,ρ,ρ′) andR(E,ρ,ρ′)

B̃(E,ρ,ρ′) =
N∑

i,j=1

φi(ρ)

[ rank N∑
k=1

cik

(
b̃−1
k

)−1
c∗jk

]
φ∗j (ρ

′) (201)

and

R̃(E,ρ,ρ′) =
N∑

i,j=1

φi(ρ)

[ rank N∑
k=1

cikb̃
−1
k c
∗
jk

]
φ∗j (ρ

′). (202)

As in the case discussed in the preceding subsection, these approximations are correct only
to first order.

We emphasize that even if the set of the coordinate functions{φi(r)} used in the current
discussion is the same as the set used in section 5.3, in general the kernels (194) and (201)
will be different approximations of the kernelB(E,ρ,ρ′). Similarly, the kernels (195) and
(202) will be different approximations of the kernelR(E,ρ,ρ′).

6. Concluding remarks

We have derived variational principles related to the non-relativisticR-matrix theory, namely
for eigenvalues of the integral operatorŝR(E) and B̂(E), for matrix elements of these
operators and their reciprocals. Some of the principles were already known but others
seem to be new. The essential result is thatall these principles may be constructed,in a
systematic way, by using the approach of Gerjuoyet al [50].
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Apart from the variational principles constructed here, there exists a variety of other
variational principles for eigenvalues and matrix elements of the operatorsR̂(E) andB̂(E)
which might be derived by minor modifications of considerations presented in sections 3
and 4. For instance, alternative variational principles for eigenvalues ofB̂(E) and R̂(E)
are

b(E) = stat

{
(∇n9|∇n9)
(9|∇n9)

[
(9|∇n9)
(∇n9|∇n9)

+ 2m

h̄2

〈9|[Ĥ − E]9〉
(∇n9|∇n9)

]
(∇n9|∇n9)
(∇n9|9)

}
(203)

and

b−1(E) = stat

{
(9|9)
(9|∇n9)

[
(∇n9|9)
(9|9) −

2m

h̄2

〈9|[Ĥ − E]9〉
(9|9)

]
(9|9)
(∇n9|9)

}
(204)

(cf equations (52) and (76), respectively). The variational principles constructed in sections 3
and 4 are, however, optimal in two respects. First, the functionals derived seem to be the
simplest possible (cf the functionals in equations (52) and (76) with those in equations (203)
and (204)). Secondly, these functionals have desirable symmetry properties: estimates
of real eigenvaluesbi(E) and b−1

i (E) obtained with arbitrary trial functions are real and
matrices formed from variational estimates of matrix elements of the Hermitean operators
B̂(E) and R̂(E) are also Hermitean. These properties of functionals are by no means
guaranteed by the Hermicity of the operators only and, for instance, one might easily
construct variational principles such that, although stationary values of functionals used
would be real eigenvalues of̂B(E) andR̂(E), variational estimates obtained would be, in
general, complex. It is clear that such variational principles would be of little practical
importance.

In the second part of this paper [52] we shall derive variational principles related to the
R-matrix theory of particles described by the Dirac equation [57, 58].
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Appendix. Some properties of determinants

Assume that a squareN ×N matrix M may be partitioned into

M =
(

A B
C D

)
(205)

where A and D are squarem × m and n × n matrices, respectively, whileB and C are
rectangularn×m andm× n matrices, respectively. Here 0< m, n < N andm+ n = N .
We presume that the matrixA is nonsingular and, therefore, has an inverse. We wish to
find the determinant of the matrixM. To this end we notice that the determinant of the
upper triangular matrix

N =
(

Im X
0 In

)
(206)
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whereIm and In are unitm×m andn× n matrices, respectively, is

detN = 1 (207)

irrespective of the form of the rectangularn×m matrix X. Thus we may write

detM = detM · detN = detMN = det

{(
A B
C D

)(
Im X
0 In

)}
= det

(
A AX + B
C CX+ D

)
. (208)

We observe that the expression for detM obtained contains a free ‘parameter’, the matrix
X, which we may choose at our will. We utilize this fact and impose the condition

AX + B = 0 (209)

hence

X = −A−1B. (210)

With this particular choice ofX we have

detM = det

(
A 0
C D− CA−1B

)
= detA · det(D− CA−1B) (211)

where the last equality follows from the well known property of determinants [59].
Consider now the very special case whenn = 1. ThenA is the (N − 1) × (N − 1)

square matrix,B is the (N − 1)× 1 column matrix, C is the 1× (N − 1) row matrix and
D is the 1× 1 matrix, i.e. a number. IfD = 0, we have

det

(
A B
C 0

)
= −detA · det(CA−1B) = −(detA) · CA−1B n = 1 (212)

where we have omitted the symbol det utilizing the fact thatCA−1B is the 1× 1 matrix,
i.e. a number. Equation (212) implies

CA−1B = −
det

(
A B
C 0

)
detA

n = 1 (213)

the formula which we have used to derive equations (174), (175), (183) and (184).
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